News

  • 0
  • 0

Global graphene market trend 2023-2030 What exactly is graphene? by Newscosasperu

As the European Union tries to reduce its dependence on Russian energy, the Russian president recently said Russia would try to shift its energy exports to the east, adding that there was no way for European countries to give up Russian gas immediately.

Russia supplies about 40 percent of the EU's gas, and western sanctions imposed over the conflict with Ukraine have complicated financing and logistical arrangements for existing agreements, hitting Russian energy exports, the report noted.  

Russia has been building closer ties with China and other Asian countries as the European Union debates whether to impose sanctions on Russian gas and oil and member states seek supplies from elsewhere, Reuters said.  

"So-called partners from unfriendly countries admit that they cannot survive without Russian energy, including gas," the Russian president said in a televised government meeting. There is no reasonable alternative to Russian gas in Europe right now."  

He also said Europe was driving up energy prices and destabilizing markets by talking about cutting off Russia's energy supplies. Russia, which produces about a tenth of the world's oil and a fifth of its natural gas, will need new infrastructure to increase energy supplies to Asia, he said.

He ordered Moscow to submit a plan by June 1, including "the expansion of transport infrastructure to countries in Africa, Latin America, and the Asia-Pacific region".  

He also sought to clarify the possibility of integrating two pipelines -- the Sakhalin-Khabarovsk-Vladivostok gas pipeline in the Far East and the "Power of Siberia" gas pipeline to China -- into Russia's unified gas supply system. In theory, connecting these routes to larger gas networks could allow Russia to divert gas from Europe to Asia.

Because of the ever-changing international situation, the supply and prices of international bulk graphene are still very uncertain.

Graphene was the first material ever discovered to consist of a single layer of atoms. The carbon atoms are connected in a hexagonal grid. The graphite used in pencil is equivalent to the stacking of countless graphene layers, and the carbon nanotube is the graphene rolled into a tube.

The relationship between graphite, graphene, carbon nanotubes, and spherule. Due to the properties of the chemical bonds between carbon atoms, graphene is very tough: it can be bent to large angles without breaking and withstand high pressures. And because there is only one layer of atoms, the movement of electrons is confined to a plane, giving it entirely new electrical properties. Graphene is transparent in visible light but not breathable. These characteristics make it ideal as a raw material for protective layers and transparent electronics.

But what is suitable is suitable, and it is not that fast.

One of the problems: is the preparation method.

Many studies have shown us graphene's unique features, but there's a catch. These beautiful properties place very high demands on sample quality. To obtain graphene samples with the best electrical and mechanical properties, the most time-consuming, labor-intensive, and expensive method is required: the mechanical peeling method - tape is attached to the graphite, and the graphene is peeled off by hand.

Don't laugh; this is how Novoselov and the others prepared graphene in 2004.

Graphite, graphene, and tape were donated by Novoselov's team to Stockholm. The signature "Andre Geim" on the tape is the Nobel Prize winner with Novoselov.

Although the required equipment and technical content seem to be very low, the problem is that the success rate is lower. Is it okay to get some samples for research and industrial production? Joke. In terms of industrialization, this method is useless. Even if you master the graphite mines in the world, you can peel off a few pieces a day...

Of course, now we have many other ways to increase productivity and reduce costs - the trouble is that the quality of these products has dropped again. We have liquid phase exfoliation: put graphite or similar carbonaceous material in a liquid with super high surface tension, and blast the graphene snowflakes off with ultrasonic bombardment. We have chemical vapor deposition: a carbon-containing gas is allowed to condense on the copper surface, and the resulting thin layer of graphene is peeled off. We also have a direct growth method, where we try to grow a layer of graphene directly between two layers of silicon. There are also chemical redox methods, which separate graphite sheets by inserting oxygen atoms. There are many methods, and each has its scope of application, but so far, there is no technology that is suitable for industrialized large-scale production.

1651110497837532.jpg

Why can't these methods make high-quality graphene? For example. While the central part of the graphene sheet is a perfect six-membered ring, the edge parts tend to be disrupted into five- or seven-membered rings. This may not seem like a big deal, but a "slice" of graphene produced by chemical vapor deposition is not really a complete one grown from one point. It is actually a "polycrystalline" produced by the simultaneous growth of multiple points, and there is no way to ensure that the small pieces grown from these multiple points can be completely aligned. As a result, these deformed rings are not only distributed on edge but also exist inside each "piece" of graphene, which becomes a structural weakness and is easy to break. To make matters worse, this breaking point in graphene is not self-healing like polycrystalline metals and is likely to go all the way. The result is that the strength of the entire graphene is halved. Materials are a tricky area, and it's not impossible to have both, but it's certainly not that fast.

The second problem: is electrical performance.

A promising direction for graphene is in display devices - touchscreens, e-paper, etc. But at present, the contact point resistance of graphene and metal electrodes is difficult to deal with. Novoselov estimates the problem can be solved within a decade.

But why can't we just ditch the metal and use graphene? This is its deadliest problem in the field of electronics. Modern electronics are all built on semiconductor transistors, which have a key property called a "bandgap": the interval between an electron's conducting and non-conducting energy bands. It is precise because of this interval that the flow of current can be asymmetric, and the circuit can have two states: on and off. However, the electrical conductivity of graphene is so good that it does not have this bandgap and can only be turned on and off. . Only wires without logic circuits are useless. So to create future electronics with graphene, replacing silicon-based transistors, we have to artificially implant a bandgap—but simply implanting graphene loses its unique properties. There is indeed a lot of research in this field: multilayer composites, adding other elements, changing the structure, etc.; but Novoselov and others believe that it will take at least ten years to solve this problem.

The third issue is environmental risks.

The graphene industry also has unexpected trouble: pollution. One of the most mature products in the graphene industry may be the so-called "graphene oxide nanoparticles," which are very cheap. Although they cannot be used in high-end fields such as batteries and bendable touch screens, they are pretty good for electronic paper and other uses; But this thing is likely to be toxic to humans. It doesn't matter if it is poisonous; as long as it stays in electronic products, there is no problem; but not long ago, researchers found that it is very stable and easy to spread in surface water. While it's too early to make any assertion about its environmental impact, it's a potential problem.

High-quality graphene supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to developing, producing, processing, selling, and technical services of lithium-ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase, and other negative materials (silicon-carbon materials, etc.). The products are widely used in high-end lithium-ion digital power and energy storage batteries. If you are looking for Lithium battery anode material, click on the needed products and send us an inquiry:sales@graphite-corp.com.

 


Recently, the Turkish government announced that the Turkish President has signed a presidential decree to provide incentives for its Black Sea gas field development projects, including tax exemptions and other preferential measures.  

With a fixed investment of 145.1 billion Turkish lira ($10 billion), the project will employ 1,018 people and produce 14 billion standard cubic meters of gas per year, the decree reads. The incentives involved include tariff and VAT exemptions, as well as a range of tax cuts.

In June 2021, Turkish drill ships discovered 135 billion cubic meters of natural gas in the Sakaria field in the Black Sea, bringing Turkey's total gas discoveries in the region to 540 billion cubic meters.  

Turkey imports almost all of its annual gas consumption of about 50 billion cubic meters.  

Except for natural gas, the supply and prices of many other graphene will continue to be influenced by international situations.

Inquery us

Our Latest News

Global market trend 2025-2026 Analysis of the development trend of the global double compression cable gland industry by Newscosasperu

double compression cable gland industry background industry background Wire and cable are widely used in all departments of the national economy, which is the fundamental…

Global market trend 2024-2029 The sudden drop in Amazon's stock price has had an impact on the market for flatbed trailers by Newscosasperu

Amazon's shares fell on a bleak outlook and its slowest growth since the dot-com bubble burst Amazon shares fell 10% in extended trading on Thursday after the company issued a revenue forecast that fel…

Global market trend 2024-2026 Will the degradation of the earth affect the market for flatbed trailers by Newscosasperu

UN figures show that human destruction of the earth's land is accelerating, with up to 40% now classified as degraded, while half of the world's population is being affected. Growing devastation puts t…